NORDITERPENE ALKALOIDS FROM Delphinium cuneatum

E. D. Khairitdinova, E. M. Tsyrlina, L. V. Spirikhin, N. I. Fedorov, and M. S. Yunusov

UDC 547.944/945

A mixture of two new norditerpene alkaloids consisting of two regioisomers was isolated from the total alkaloids of Delphinium cuneatum roots. Their structures were proposed as 16-demethoxydelavaine (**2a** and **b**) on the basis of PMR, ¹³C NMR, IR, and mass spectra.

Key words: *Delphinium cuneatum*, roots, norditerpene alkaloids.

Roots of *Delphinium cuneatum* collected on Belebeev plateau (Bashkortostan, Aslykul/Kandrykul area, flowering phase) were studied. We have previously reported the isolation from this plant of the new alkaloid 16-demethoxymethyllycaconitine (1) [1].

A second base (2) that has not been previously described in the literature was isolated during further work on alkaloid separation. The mass spectrum of 2 gave a peak for the molecular ion at 684 [M]⁺. According to IR spectra, 2 contains an ester (1720 cm⁻¹) and amides (1540 and 1590 cm⁻¹). Alkaline hydrolysis of 2 produced aminoalcohol 3, the spectral properties (PMR and ¹³C NMR) of which were identical to those described earlier for 16-demethoxylycoctonine, the product of alkaline hydrolysis of 1 [1].

Thus, 1 and 2 differed by the substituent on C18.

The PMR spectrum of $\mathbf{2}$ exhibited two doublets at 1.29 and 1.35 ppm (J = 6.9 Hz) and singlets for two ester methoxyls at 3.69 and 3.72 ppm. The aromatic protons resonated at 7.12-8.74. Signals that could be assigned to NHCO protons appeared at very weak field (11.05 and 11.18 ppm).

The ¹³C NMR spectrum using JMODCH for **2** gave signals belonging to the C-18 substituent, some of which were doubled such as 114.6/114.7, 141.6/141.8, 51.8/52.0, and 17.9/17.1 ppm. The region characteristic of carbonyl C contained four singlets at 169.9, 172.5, 174.1, and 176.0 ppm (Table 1).

The spectral data suggested that 2 was a pair of isomers 2a and 2b, which could be formed from 1 by cleavage of N–C(1") and N–C(4") bonds of the succinimide ring with further methoxylation of the corresponding decomposition products. Base 2 might have been formed also from 1 during isolation of the alkaloids.

¹⁾ Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 450054, Ufa, Pr. Oktyabrya, 71, fax (3472) 35 60 66, e-mail: chemorg@anrb.ru; 2) Institute of Biology, Ufa Scientific Center, Russian Academy of Sciences, 450054, Ufa, Pr. Oktyabrya, 71. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 467-468, September-October, 2005. Original article submitted April 4, 2005.

TABLE 1. Chemical Shifts in 13 C NMR Spectra of 16-Demethoxymethyllycaconitine (1), 16-Demethoxydelavaine (2), and Delavaine (4) [2] (δ , ppm)

Atom	δ, ppm			A 4	δ, ppm		
	1	2 (a, b)	4 (a, b)	Atom	1	2 (a, b)	4 (a, b)
C-1	83.1	83.0	83.9	CH ₃ -CH ₂ -N	14.2	14.2	14.0
C-2	25.5	25.5	26.1	CH ₃ - <u>CH</u> ₂ -N	51.1	51.1	50.9
C-3	32.2	32.2	32.3	C_1 -OCH ₃	56.0	56.1	55.7
C-4	37.8	37.9	37.7	C_{14} -OCH ₃	58.5	58.5	58.1
C-5	43.0	43.1	43.4	C ₁₆ -OCH ₃			56.3
C-6	90.9	90.9	91.1	C ₆ -OCH ₃	57.3	57.3	57.8
C-7	89.8	89.9	88.6	C=O	164.2	168.1	168.1
C-8	77.6	77.6	77.5	C-1'	127.1	114.6/114.7	114.7/114.8
C-9	50.7	50.8	50.7	C-2'	133.0	141.6/141.8	141.7/141.9
C-10	46.3*	46.3	46.2	C-3'	129.3	120.6	120.8
C-11	48.9	48.9	49.1	C-4'	133.6	134.9	134.9
C-12	29.1	29.1	28.8	C-5'	131.1	122.5	122.6
C-13	31.9	31.8	38.2	C-6'	130.0	130.4	130.3
C-14	84.9	84.4	84.0	C-1"	179.8	172.5/176.0	172.4/175.9
C-15	25.4	25.4	33.9	C-2"	35.3	39.0/35.8	39.1/35.9
C-16	22.6	22.6	84.6	C-3"	37.0	37.5/41.4	37.5/41.5
C-17	64.9	64.9	64.6	C-4"	175.8	174.1/169.9	174.1/169.9
C-18	69.6	69.7	69.9	C-5"	16.4	17.9/17.1	17.9/17.1
C-19	52.5	52.5	52.5	OCH_3		51.8/52.0	51.7/51.9

The alkaloid delavaine (4) has been reported [2]. It is also a mixture of two isomers that differ from 2 by the presence of a C16 methoxy. Thus, 2 is 16-demethoxydelavaine.

EXPERIMENTAL

IR spectra were recorded on UR-20 and Specord M80 spectrometers in mineral oil. Mass spectra were obtained on Varian Mat-CH5 and MX-1310 mass spectrometers by matching peaks with ionization energy 70 eV. PMR and ¹³C NMR spectra were recorded in Bruker AM-300 and Bruker AMX-III 300 instruments in CDCl₃ with TMS internal standard.

Total alkaloids isolated by aqueous acetone extraction were divided by base strength into two large fractions: moderately basic (**A**, pH 10) and strongly basic (**B**, pH 12), which in turn were separated into narrower fractions: **A**, pH 6, 7, 9, 12; **B**, pH 6, 7, 9, 12.

16-Demethoxydelavaine (**2a and 2b**). Part of the strongly basic total alkaloids pH 6 (**B**) (0.3 g) was chromatographed over an SiO₂ column (40/100) with elution by benzene:methanol with methanol concentration increasing from 0.5 to 10% by volume. Effluents containing 3% methanol isolated **2** (0.011 g). Mass spectrum (EI, 70 eV, m/z, I_{rel} , %): 684 (23) [M]⁺, 669 (25), 653 (100).

PMR spectrum (CDCl₃, δ, ppm, J/Hz): 1.09 (3H, t, J = 7.0, $\underline{C}H_3$ –CH₂–N), 1.29 and 1.35 (3H, both d, J = 6.9, H-5″), 3.30, 3.40, 3.43 (3H each, all s, 3×OMe), 3.48 (1H, t, J = 4.2, H-14), 3.69 and 3.72 (3H, both s, 2×OMe), 3.88 (1H, s, H-6), 4.19 (2H, s, H₂-18), 7.12, 7.57 (1H each, both d, ${}^3J = 7.6$, H-3′, H-6′), 8.00, 8.74 (1H each, both t, ${}^3J = 7.6$, H-4′, H-5′), 11.05 and 11.18 (1H, both s, NHCO).

16-Demethoxylycoctonine (3). A solution of 2 (0.011 g) in methanol (5 mL) was treated with KOH in methanol (5 mL, 5%) with heating (50°C) on a magnetic stirrer for 2 h until starting 2 disappeared (TLC monitoring). Methanol was removed in a rotary evaporator. The solid was treated with water and extracted with benzene (6×5 mL). The extract was evaporated to afford 3 (0.006 g, quantitative yield).

ACKNOWLEDGMENT

The work was supported financially by the Foundation for Individual Support of Leading Scientists and Science Schools (grant No. 00-15-97325).

REFERENCES

- 1. E. D. Khairitdinova, E. M. Tsyrlina, L. V. Spirikhin, N. I. Fedorov, Yu. Ya. Efremov, and M. S. Yunusov, *Izv. Akad. Nauk, Ser. Khim.*, **9**, 1968 (2003) [Engl. transl., *Russ. Chem. Bull.*, **9** (2003)].
- 2. S. W. Pelletier, F. M. Harraz, M. M. Badawi, S. Tantiraksachai, F.-P. Wang, and S.-Y. Chen, *Heterocycles*, **24**, 1853 (1986).